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The diagonal elements of the first and second order spinless density matrices 
have been calculated for the lowest excited ~P and 3p terms of Be, B + and C + + 
using wavefunctions at different levels of  approximations published in the 
literature. The analysis of these functions has resulted in a new interpretation 
of Hund's first rule in terms of  an anisotropic screening effect. 

Key words: Hund's rule - Screening effect, anisotropic ~ - Be 

1. Introduction 

The explanation of Hund's  first rule, that the higher spin multiplet of an atomic 
system has the lower energy, was for many years based on the knowledge of  the 
Fermi hole: since two electrons with the same spin cannot occupy the same point 
in space, the electrons in the higher multiplet term were assumed further apart on 
the average, thus lowering the interelectronic repulsion energy of this term. 

During the last few years this explanation has proved invalid for the first members 
of  an isoelectronic sequence [1-7, 10]. 

Based on a detailed analysis of  wavefunctions for the 1p and 3p terms of the con- 
figuration ( ls)2(2s)l(2p) 1 for Be, B + and C ++, we have been able to explain 
Hund's  first rule as an anisotropic screening effect essentially arising because of 
the antisymmetry principle. This explanation is also valid for the first few members 
of  the isoelectronic sequence. 

2. Earlier Investigations Concerning the Interpretation of Hund's First Rule 

From Refs. [1-7, 10] it is evident that the well-known explanation of Hund's first 
rule is invalid for a number of neutral atoms, and the lower energy of the higher 
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multiplet .term in actual fact is due to a lower electron-nucleus attraction energy. 
In Ref. [1] Kohl has analysed the 1S and 3S terms arising from the (ls)l(2s) 1 
configuration of the He-atom on the basis of correlated wavefunctions. His results 
showed that the mean interelectronic distance is greater in the 1S than in the 3S 
term, and the interelectronic repulsion energy is smaller in the ~S term in obvious 
contradiction to the usual conception of the two terms. 

Messmer and Birss [2] have shown the interelectronic repulsion energy to be 
larger in 2 3p He than in 2 Xp He. Katriel [3, 4], Colpa and Islip [5] and 
Killingbeck [6] reached the same conclusion studying the isoelectronic sequence 
with two electrons. 

Katriel [7] also analysed the 3p, 1D and 1S terms arising from the (ls)2(2s)2(2p) 2 
configuration of the isoelectronic sequence containing six electrons. He found 
that the electron repulsion energy is largest in the 3p term and smallest in the tS 
term of the neutral atom. 

Tatewaki and Tanaka [9] have used the CI wavefunctions published by Tatewaki 
et al. [8] to calculate the mean interelectronic distance in the ~po and 3po terms 
arising from the (ls)2(2s)~(2p) ~ configuration of Be, B + and C + +. The calculated 
mean distances turned out to be smaller in the ap than in the ~P term for Be and 
B +, whereas the opposite result was reached for C + +. 

Colpa et al. [10] have studied a number of isoelectronic sequences and in all cases 
found that the lower energy of the highest multiplet term of the neutral systems 
was caused by a lower electron-nucleus attraction energy. 

3. The Wavefunctions Forming the Basis of the Present Analysis 

The wavefunctions chosen are those published by Tatewaki et al. [8]. They used 
the wavefunctions in a study of the correlation hole in the 1S, ipo and 3po terms 
of Be, B + and C + + [9]. 

Tatewaki et al. [8] have published five different types of wavefunctions for the 
isoelectronic sequence with four electrons for all integer nuclear charges between 
four and ten. Four of these wavefunctions were based on the independent particle 
model, while the fifth was a limited configuration interaction function (CI). 

The four different types of wavefunctions within the independent particle model 
may be written as 

where - goes with the 1P and + with the 3p term. In all cases the orbitals con- 
sisted of Slater type functions. For the two least complicated wavefunctions each 
orbital was approximated by a single Slater type function with exponent either 
determined by Slater's screening rules (SO) or by minimizing the total energy 
(STO). The orbitals in the remaining two wavefunctions were expressed in terms 
of two (DZ) respectively four (HF) Slater type functions with all exponents 
determined by energy minimization. 
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The last mentioned wavefunction (HF) is close to the Hartree-Fock limit. Its 
orbitals, extended by a 3s-, a 3p- and a 3d-orbital, were used to determine a CI 
function including tlhe (2p2s), (3p2s), (3s2p), (3d2p), (3p3s) and (3d3p) configura- 
tions. 

4. The Missing Connection between Mean Values and Most Probable Spatial 
Configurations of the Particles 

4.1. One-Electron Densities 

Using the wavefunctions from [8] in the STO, HF and CI approximations the 
electron densities r2P(r) were calculated by means of the expression 

i s i  

where sl runs over the occupied orbitals in the i'th determinant, and ci is the 
coefficient of this determinant in the wavefunction. (The electron density is 
normalized to the total number of electrons in the system.) 

The electron densities based on the HF wavefunctions are shown in Figs, 1 a, b for 
the 1p and 3p terms of Be and B +. It is noticed that the electron density for the 
neutral atom as well as for the positive ion is more diffuse in the 1p term than in 
the 3p term. The effect is most pronounced for the neutral atom, and has here been 
well known since Hartree and Hartree's work [11]. 

Fig. 1. Electron densities of  the i p  
and 3p terms of Be and B + as 
calculated from wavefunctions in 
the HF  approximation.  (Densities 
are normalized to 4 electrons, and 
distances are in a.u.) 
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Figs. 2a-d show the differences between the electron densities arising from the 
STO and CI functions with respect to the ones arising f rom the HF  functions for 
the ~P and 3p terms of  Be and B + . 

The flexibility introduced with the H F  functions as compared to the STO func- 
tions is purely a radial in-out  effect. This causes a spreading of  charge for the 
systems considered except for ap Be, in which case a contraction occurs in the 
L shell. 
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Fig. 2. Differences between the electron densities arising from the STO and the CI wavefunctions 
relative to those arising from the HF functions for the 1p and 3p terms of Be and B § . (Distances in a.u.) 

Going to the CI approximation hardly any changes occur in the one-electron 
densities of  1p, 3p B + and 3p Be. This is expected, since the HF  approximation 
should offer a fair description of one-electron properties. Nevertheless, the CI 
function for I p Be to a great extent cancels the changes occurring in the one- 
electron density going f rom the STO to the HF  approximation.  

Table 1 shows the mean values of  the individual terms of the Hamil tonian for the 
1p and 3p terms of  Be, B + and C ++ 

The mean values ( r )  of  the distance between the nucleus and an electron for the 
~P terms nicely reflect the differences in the one-electron densities arising from 
wavefunctions at different levels of  approximation.  However, no correlation exists 
between the mean values of  the electron-nucleus attraction energy ( -  (z/r)) and 
the different one-electron densities. Conversely, for the 3p terms the ( r )  values 
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Table 1. Mean values of the total energy E, the electron-nucleus attraction energy -(z/r>,  the inter- 
electronic repulsion energy < 1/r12 > and the distance between the nucleus and an electron <r>. (All 
numbers in a.u.) 

Be B + C + + 

Wave function ~ p 3p 1 p 3p 1 p 3p 

_ E  a 

- -  <z/r> 

(1/r~2> 

<r> 

STO 14.3724 14.4933 23.8828 24.0956 35.9263 
HF 14.3947 14.5115 23.9128 24.1201 35.9612 
CI 14.4198 14.5182 23.9554 24.1270 36.0060 

STO 32.838 33.390 53.941 54.274 79.771 
HF 32.912 33.412 53.958 54.315 79.818 
CI 33.046 33.410 53.971 54.314 79.824 

STO 4.093 4.403 6.175 6.083 7.918 
HF 4.123 4.389 6.132 6.075 7.896 
CI b 4.206 4.374 6.060 6.060 7.812 

STO 2.071 1.550 1.086 1.051 0.818 
HF 2.042 1.562 1.110 1.049 0.823 
CI 2.052 1.565 1.115 1.050 0.825 

36.2023 
36.2357 
36.2428 

80.142 
80.206 
80.208 

7.737 
7.735 
7.722 

0.802 
0.798 
0.798 

" From Ref. [8]. b For 1po and 3po according to Ref. [9]. 

cor re la te  nicely with - (z /r>,  but  these values do  no t  cor re la te  with the one-e lec t ron 
densit ies.  

4.2. Two-Elec t ron  Densi t ies  

The wavefunct ions  in the  STO, H F  and  CI  a p p r o x i m a t i o n s  were a lso  used in 
ca lcu la t ing  explici t  expressions for  the  d i agona l  e lements  o f  the spinless second 
o rde r  dens i ty  mat r ix  ave raged  over  the  c o m p o n e n t s  o f  a mult iplet .  The  resul t ing 

func t ion  ~r22 depends  solely on the lengths r 1 and  r 2 o f  the rad ius  vectors  to the 
two  electrons and  the angle  0 between the rad ius  vectors.  

Phys ica l ly  the funct ion f2 z is desc r ib ing  the n u m b e r  o f  e lec t ron pai rs  in dis t inct  
spa t ia l  a r r angement s  (f2 z is no rma l i zed  to  6, the to ta l  n u m b e r  o f  pairs) .  

Figs.  3a -c  show how the 0 2,s der ived  f rom the CI  funct ion  vary  with  0 for  dist inct ,  
chosen values o f r  1 and  r 2 for  the 1P and 3p terms o f  Be, B + and C + +. 

Figs.  5 and  6 in the append ix  show in m o r e  deta i l  0 2 as a funct ion  o f  r l  and  r 2 for 
discrete  values o f  0 for  the aP, 3p  te rms o f  Be. 

I f  ~r'~ 2 w a s  worked  out  us ing the SO funct ions  the fo l lowing re la t ionsh ip  would  ho ld :  

0; r2, 180~ 3p). 

This fea ture  is recognizab le  in the  H F  a p p r o x i m a t i o n ,  and  even the f22's derived 
f rom the CI  funct ions  show some reminiscences  o f  it, especial ly  for  the posi t ive  ions. 
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Whereas the f2 2 functions for the 1p terms derived from the HF functions assume 
their largest values, when the two electrons are occupying the same point in space, 
a distinct angular correlation is introduced with the CI functions, as seen in Figs. 
3a-c. The angular correlation is most pronounced for the neutral atom, but it is 
recognizable even for the doubly charged ion. 

Fig. 3. The two-electron 
density function 0 2 arising 
from the CI wavefunctions 
for the 1p and 3p terms of  

Be, B + and C ++, The f22's 

are plotted for discrete 
values of r 1 and  r 2 (in a.u,) 
as indicated in the figures, 
and as function of  0, ( 0  2 
is normalized to 6 electron 
pairs) 



A New Interpretation of Hund ' s  First Rule 171 

Except for the (22's derived from the CI functions for the 1p terms, the most 
characteristic features of the ~22 functions are, that they assume their maximum 
values for those spatial arrangements of the particles, which are consistent with the 
earlier interpretation of Hund's first rule. 

Looking at the expectation values of 1/r12 a s  resulting from the different terms 
and approximations (Table I), it is then obvious, that the usual interpretation of 
Hund's rule is not applicable to the neutral atom, and even for the monopositive 
ion it is questionabt~e. 

5. A New Interpretation of Hund's First Rule 

As noticed from Figs. 3, 5 and 6 the most characteristic features of the wave- 
functions for the ~P and 3p terms of the Be isoelectronic sequence are the correla- 
tion effects built into the wavefunctions at the approximation level of the inde- 
pendent particle model due to the antisymmetry principle. 

This correlation increases the probability of finding the electrons with larger angles 
between the radius vectors in the 3p term than in the ap term, and as a result the 
electrons in the higher multiplet term get closer to the nucleus. 

The nucleus in the higher multiplet term is thus screened to a smaller extent than 
in the lower multiplet term, and as shown in Fig. 4 this is an anisotropic effect. 
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Fig. 4. The anisotropic screening effect 
in the 1p and 3p terms of Be and B § as 
calculated from the HF wavefunctions. 
The effect is illustrated as the conditional 
probability of  finding electron 2 at 
distances in between the nucleus and 

.5 
electron 1 and at some distinct, chosen 
solid angles, which are determined by the 
position of  the nucleus and the direction 
of  the radius vector to electron 1. The 
probability is shown as a function of  the 
distance between the nucleus and .o 
electron 1. (Distances in a.u.) 
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Fig. 4 shows the conditional probability of  finding electron 2 at distances in 
between the nucleus and electron 1 and at some distinct, chosen solid angles 
which are determined by the position of  the nucleus and the direction of  the radius 
vector to electron 1. The probability is shown as a function of the distance between 
the nucleus and electron 1 for the 1P and ap terms of  Be and B + . 

When electron 1 is located at distances typical for the electrons in the L shell the 
screening effect is pronouncedly dissimilar for the two terms, when half the vertical 
angle of the cone defining the solid angle element is equal to or less than 90 ~ . 

This anisotropic screening effect provides an explanation of Hund's  first rule, 
which is valid for the positive ions as well as for the neutral atom. 

6. Conclusion 

One- and two-electron density functions have been compared with the expectation 
values of the individual terms of  the Hamiltonian for the lowest excited 1p and 3p 
terms of the Be isoelectronic sequence. It is realized that there is no obvious correla- 
tion between the expectation values and the most probable spatial configurations 
of  the particles. This invalidates the usual interpretation of  Hund's  first rule, which 
is then shown to be explainable as an anisotropic screening effect essentially due 
to the antisymmetry principle. 
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Appendix 

Figs. 5 and 6 show the two-electron probability function ~"~2 for 1p and ap Be for 
three distinct, chosen values of 0; a-c show ~"~2 as  derived from the HF functions 
of the two terms, d - f  and g-i show the differences between the f2 2,s derived from 
the STO and CI functions, respectively, relative to those from the HF functions. 

The contour values of  02 derived from the HF functions are 1.0, 0.5, 0.25, 0.125, 
0.0625, 0.03125, 0.015625, 0.003125 and 0.0003125, and the same values with + 
and - signs have been used plotting the differences (d-f  and g-i). The dotted lines 
show the nodes, while the full lines represent positive contours and the broken 
lines negative contours. 

As mentioned in the text, the function f2 2 specifies the number of  electron pairs out 
of the 6 possible ones found in distinct spatial arrangements. 
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Fig. 5. The two-electron density function f~2 for 1p Be. a, b and c are derived from the HF wave- 
function and plotted for discrete values of  0. d, e, f, g, h and i are the differences between the ~2's 
derived from the STO and the CI functions relative to those derived from the HF functions. The 
abscissa and the ordinate represent the distances between the nucleus and the two electrons, which in 
all cases vary from 0 to 6 a.u. The values of the contours are stated in the text. (~2 is normalized 
to 6 electron pairs) 

From Figs. 5 and 6 (a, b and c) it is noticed that the diagrams show angle inde- 
pendent as well as angle dependent parts. The angle independent parts appear at 
small values of r 1 and/or r 2 . Figs. 5 and 6 (a, b and c) show that the pair density is 
largest with both electrons in the K shell. The pair density corresponding to one 
electron in the K shell the other in the L shell, only reaches about half the value of 
the pair density corresponding to both electrons in the K shell. 

While both the above-mentioned pair densities are independent of the angle 
between the radius vectors to the two electrons, the pair density in the L shell is 
strongly angle dependent. It reaches a maximum value for a specific spatial 
arrangement depending on the term considered. 

The most striking feature of the 02's derived from the HF functions are that they 
assume their maximum values for those spatial arrangements which are usually 
expected for the terms in question. 
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Fig. 6. The two-electron density function ~a for ap Be. a, b and c are derived from the HF wavefunction 
and plotted for discrete values of 0. d, e, f, g, h and i are the differences between the f~2's derived 
from the STO and the CI functions relative to those derived from the HF functions. The abscissa and 
the ordinate represent the distances between the nucleus and the two electrons, which in all cases vary 
from 0 to 6 a.u. The values of the contours are stated in the text. (~2 is normalized to 6 electron pairs) 
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